DIEZ FORMAS DE PENSAR Y RESOLVER UN PROBLEMA MATEMÁTICO 2da. PARTE
Gracias por su preferencia seguimos:6. CREA TU PROPIO MUNDO
Un matemático crea sus propios ejemplos, algunos serán normales, otros extremos y otros serán contraejemplos. Cuando conozcas el procedimiento de resolver un tipo de problemas, intenta ir más allá y busca problemas similares que no puedan resolverse con ese método y sea necesario mejorarlo.
7. Y SI SUPONGO QUE...
Comprender la demostración de un teorema puede llegar a ser difícil. No suelen explicarse los pormenores que justifican todos los pasos seguidos por el autor para llegar a las conclusiones o cómo fue descubierta la clave para alcanzar la solución. Es una de las cosas más difíciles a las que se enfrentan los matemáticos. Todos los teoremas dan por ciertas unas hipótesis iniciales. Por ejemplo, el teorema de Pitágoras da por supuesto un ángulo de noventa grados dentro del triángulo. Estas presuposiciones serán usadas antes o después en el transcurso de la demostración (de lo contrario serían innecesarias). Por tanto, tienes que estar atento al momento en que se hace uso de ellas en el transcurso del desarrollo. Conociendo su estructura, no necesitarás memorizar sus conclusiones.
8. EMPIEZA POR LO MÁS COMPLICADO
Para probar que una igualdad es cierta, es mejor comenzar por el lado más complicado de los dos, intentar simplificarlo y reducirlo hasta llegar a la expresión del otro lado de la igualdad. Intentar partir de la ecuación completa, pasando de uno a otro miembro parte de los términos, sin darte cuenta podría llevarte a repetir en círculos los mismos pasos sin llegar a resolverla.
9. ¿QUÉ PASARÍA SI...?
A los buenos matemáticos les gusta preguntarse: «¿Qué pasaría si, por ejemplo, prescindo de esta hipótesis?» Haciendo este experimento, podrás entender por qué un resultado es cierto o por qué se define de esa manera un elemento de la demostración. ¡Han aparecido nuevos y más elegantes teoremas a partir de condiciones iniciales más débiles que en el original! La idea es hacerse siempre nuevas preguntas.
10. ¡EXPLÍCATE!
Cuando Sir C. Zeeman fundó el Instituto de Matemáticas de la Universidad de Warwick, una de sus ideas para crear una atmósfera matemática en el centro fue la instalación de pizarras en los pasillos —y no sólo dentro de las aulas—, para que unos y otros pudieran explicar el trabajo que estaban realizando, favorecer la colaboración y contrastar los resultados. En el Instituto de Ciencias Matemáticas «Isaac Newton» de Cambridge, hay pizarras en los baños y en el ascensor, ¡qué sólo recorre dos plantas! Explicar a otros tus ideas contribuye a aclararlas y puedes aprender mucho con las sugerencias que ellos puedan aportarte o encontrar errores que de otro modo no verías. Busca a alguien con quien puedas hablar de tus problemas... matemáticos.
Y con esto concluimos esta serie de pequeños pero significativos consejos para resolver de una manera mas practica y viable.
No hay comentarios:
Publicar un comentario