La sucesión de Fibonacci
Consideremos
la siguiente sucesión de números:
1, 1, 2, 3, 5, 8, 13, 21, 34...
Cada
número a partir del tercero, se obtiene sumando los dos que le
preceden. Por ejemplo, 21 = 13 + 8; el siguiente a 34 será 34 + 21 =
55.
Esta
sucesión es la llamada "sucesión de Fibonacci".
La
sucesión de Fibonacci presenta diversas regularidades numéricas. Para
que resulte más sencillo las hemos enunciado en casos particulares
(aunque se cumplen en general) y hemos calculado
los primeros catorce términos
de esta sucesión:
t1 | t2 | t3 | t4 | t5 | t6 | t7 | t8 | t9 | t10 | t11 | t12 | t13 | t14 |
1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 |
-
Si sumas los cuatro primeros términos y añades 1, te sale el sexto (1+1+2+3 + 1 = 8). Si sumas los cinco primeros términos y añades 1, te sale el séptimo (1+1+2+3+5 + 1 = 13).
-
Si sumas los tres primeros términos que ocupan posición impar (t1,t3,t5) sale el sexto término (t6), (1+2+5 = 8). Si sumas los cuatro primeros términos que ocupan posición impar (t1,t3,t5,t7) sale el octavo término (t8), (1+2+5+13 = 21).
-
Si sumas los tres primeros términos que ocupan posición par (t2,t4,t6) y añades 1, sale el séptimo término (t7), (1+3+8 + 1 =13). Si sumas los cuatro primeros términos que ocupan posición par (t2,t4,t6,t8) y añades 1, sale el noveno término (t9), (1+3+8+21 + 1 =34).
¡Aún las
hay más difíciles de imaginar!
-
Tomemos dos términos consecutivos, por ejemplo: t4=3 y t5=5; elevando al cuadrado y sumando: 32+52=9+25=34 que es el noveno (4+5) término de la sucesión. Tomando t6=8 y t7=13; elevando al cuadrado y sumando: 82+132=64+169=233 que es el (6+7) decimotercer término de la sucesión.
-
Pero si elevamos al cuadrado los cinco primeros términos y los sumamos, sale el producto del quinto y el sexto término: 12+12+22+32+52=40=5*8. Si hacemos lo mismo para los seis primeros términos, sale el producto del sexto y el séptimo término:12+12+22+32+52+82=104=8*13.
-
Y quizás la más sorprendente sea la siguiente propiedad. Dividamos dos términos consecutivos de la sucesión, siempre el mayor entre el menor y veamos lo que obtenemos:
1
: 1 = 1
2 : 1 = 2
3 : 2 = 1´5
5 : 3 = 1´66666666
8 : 5 = 1´6
13 : 8 = 1´625
21 :13 = 1´6153846....
34 :21 = 1´6190476....
55 :34 = 1´6176471....
89 :55 = 1´6181818....
2 : 1 = 2
3 : 2 = 1´5
5 : 3 = 1´66666666
8 : 5 = 1´6
13 : 8 = 1´625
21 :13 = 1´6153846....
34 :21 = 1´6190476....
55 :34 = 1´6176471....
89 :55 = 1´6181818....
Al
tomar más términos de la sucesión
y hacer su cociente nos acercamos al número de oro. Cuanto mayores son
los términos, los cocientes se acercan más a =1,61803....
En lenguaje matemático,
Efectivamente,
No hay comentarios:
Publicar un comentario