viernes, 25 de octubre de 2013

COMO ENSEÑAR LAS TABLAS DE MULTIPLICAR 

 

La enseñanza de las tablas de multiplicar se aborda de lleno en 2º de Educación Primaria y una de las principales cuestiones que ocupan a los maestros, tanto de alumnos en general como de alumnos con necesidades educativas especiales, son dos:
  1.  Cómo puedo lograr que los alumnos aprendan las tablas y
  2. cuál es el método más sencillo para enseñarlas.
Debemos reconocer que los libros de texto no siempre respetan el ritmo de aquellos que van más lentos o tienen más dificultades, y presentan importantes saltos cualitativos en sus actividades de una pagina a otra. Es necesario que organizamos el trabajo de manera que se ofrezcan actividades más estructuradas  en función de los distintos ritmos y dificultades de aprendizaje.
 Hay múltiples metodologías y estrategias para abordar este aspecto y desde aquí intentaré ofrecer un método lo más completo y sencillo posible, adaptado a distintos ritmos y necesidades.

¿Por qué a algunos niños les cuesta tanto aprender las tablas de memoria? Hay factores personales sin duda, como la capacidad de memoria a largo plazo, la motivación por aprenderlas o la constancia y el trabajo constante. Además, si hablamos de niños con necesidades educativas especiales, no podemos olvidar que pueden presentar déficit de atención, problemas en la memoria a corto o largo plazo, dificultades con el cálculo mental, con las seriaciones,... Todo esto nos lleva a concluir que debemos ser muy cuidadosos a la hora de elegir la metodología para enseñar las tablas, sin olvidar que no hay fórmulas mágicas y que lo que funciona con un niño puede no funcionar con otro.

Es muy importante que los niños entiendan la utilidad de la multiplicación; que es un método más cómodo y rápido de hacer sumas repetidas. El proceso de elaboración de las propias tablas suele ser práctico, ya que los niños ven claramente la suma repetida, y que los resultados de una tabla son series progresivas de 2 en 2, de 3 en 3,.... Una manera fácil de ver este aspecto es que los propios niños elaboren cada uno sus tablas utilizando un sistema parecido al siguiente:


Es conveniente que en los momentos iniciales el alumno manipule y visualice lo más posible, por lo que puede ser interesante darle al alumno una plantilla con la cuadrícula en blanco y que él mismo vaya pegando las fichas o dibujando puntitos según la tabla que se esté trabajando, identificando entonces el resultado como la suma repetida de las fichas que va pegando o de los puntos que va dibujando.

En un momento posterior, cuando el niño ya entiende el procedimiento y tenemos que pasar al aprendizaje de las tablas resulta útil que cubra un cuadro de doble entrada con las combinaciones que vaya dominando. Puede colorear del mismo color las combinaciones que tengan el mismo resultado. Este procedimiento le lleva a hacer asociaciones entre:
  1. distintas combinaciones que tienen el mismo resultado (p.e. 5x8 y 4x10) y
  2. de la propiedad conmutativa de la multiplicación, aspecto que facilita el aprendizaje, ya que reducimos el número de combinaciones a aprender (p.e. como sé que 4x9 son 36, también sé la combinación de 9x4)

¿Qué progresión debemos seguir en la enseñanza de las tablas?
Hay varias opiniones al respecto, pero es útil (con carácter general) seguir esta secuencia:
  1. Tabla del 0. Cualquier número multiplicado por 0 es 0.
  2. Tabla del 1. Cualquier número multiplicado por 1 es dicho número.
  3. Tabla del 10. Sólo hay que añadir un 0 al número que multiplicamos. 5x10=50
  4. Practicar la propiedad conmutativa sobre las tablas aprendidas.
  5. Tabla del 2. Cualquier número multiplicado por 2 es el doble de ese número. También es útil hacer series de 2 en 2.
  6. Tabla del 3. Hacer series de 3 en 3.
  7. Tabla del 5. Hacer series de 5 en 5.
  8. Memorizar los dobles que nos faltan: 4x4, 6x6, 7x7 y 8x8.
  9. Enseñar alguna de las estrategias de la tabla del 9.
  10. Ahora sólo quedan 6 combinaciones por aprender: 4x6, 4x7, 4x8, 6x7, 6x8 y 7x8
Otras ayudas.

Podemos tener en cuenta además otras ayudas para aprender las tablas:

  • 7x8 y 8x7 es fácil de memorizar si aprendemos este truco: 5,6,7 y 8. Juntamos el 5 y el 6: 56. Siempre que multipliquemos 7x8 o 8x7 nos dará 56.
  • Las multiplicaciones que riman son más fáciles: 6x4=24, 6x6=36 o 6x8=48....
  • También puede ser bueno saber cuál es la multiplicación más difícil de aprender, ya que los niños prestan más atención en ella. Es 6x7/7x6 
  • Para multiplicar por 5

- El resultado siempre acaba en 0 o en 5. 5x1=5, 5x2=10, 5x3=15, 5x4=20....

- El resultado es siempre la mitad de multiplicar dicho número por 10 (8x5 = a la mitad de 8x10). Este "tip"  o consejo puede resultar más complicado pero es esencial cuando se trata de multiplicar cifras grandes por 5.  Por ejemplo, 642 x 5, multiplicamos 642 x 10 = 6420, y dividimos el resultado entre 2, es decir, 6420 : 2 = 3210. A esta estrategia se le llama "Cero y Mitad".

  • Para multiplicar por 6
-La multiplicación de 6 por un número par, acaba en la misma cifra de dicho número. (6×2=12, 6×4=24, 6×6=36, ....)

  • Para multiplicar por 9

- La última cifra del resultado va disminuyendo así: 9, 8, 7, 6.... (9x1=9, 9x2=18, 9x3=27, 9x4=36...)

- Multiplicar un número por 9 es lo mismo que multiplicarlo por 10 e restarle dicho número (9x5 = 10x5 - 5)

- El aprendizaje de la tabla del 9 se puede favorecer enseñando un método muy sencillo usando los dedos de las manos.

Comenzamos por decirle al niño que abra sus manos con todos los dedos extendidos y con las palmas a la vista.

Mentalmente debe recordar que el dedo pulgar de la mano izquierda representa al 1, el índice de la misma mano sería el 2, y así sucesivamente hasta llegar al pulgar de la mano derecha que equivaldría al 10.



Por ejemplo 9x4: qué número multiplicamos por 9?, en este caso es el 4. Entonces pedimos al niño que doble el dedo nº 4 (dedo anular de la mano izquierda).

El resultado de la multiplicación será siempre la cantidad de dedos que quedan a la izquierda del dedo doblado (quedan 3 dedos a la izquierda) seguido de la cantidad de dedos que quedan a la derecha del dedo doblado (quedan 6 dedos a la derecha), es decir 36. 


Aquí os dejo un ejemplo práctico de cómo se haría.




 

 Otras cosas que pueden ayudar.


  • Cuando el niño tenga que hacer un ejercicio de multiplicación y tenga dudas sobre una tabla, es mejor que consulte a que  conteste al azar y haga mal la multiplicación.

  • Colocar un cartel en la clase, cerca del niño para que pueda consultarlo si lo necesita.

  • Practicar con tarjetas de memorización. Consiste en pequeñas tarjetas en las que escribiremos por un lado las operaciones de la tabla (en un lado iría, por ejemplo, 4x5 e 5x4; en otro lado de la tarjeta escribiríamos el resultado de dichas operaciones, en este caso 20. Una vez construidas las tarjetas con todas las tablas,  se pueden hacer ejercicios de memorización con ellas. Puede tratarse de "solitarios", en los que el niño trabaja solo, o también se puede practicar con dos jugadores.
  • Jugar al Bingo Multiplicativo. Hacer varios cartones de bingo de 5x5 casillas. Cada jugador elige 25 de los siguientes números: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 54, 56, 63, 64, 72, 81, colocando cada uno de ello en cada casilla. Después de elegir aleatoriamente distintas combinaciones cada jugador debe tachar el resultado de la multiplicación propuesta si dicho resultado está en su cartón, hasta que uno de ellos cante linea e/o bingo.

No hay comentarios:

Publicar un comentario