viernes, 28 de febrero de 2014

ÁLGEBRA


¿Que es el algebra?

El algebra es una rama de las matematicas que se ocupa de estudiar las propiedades generales de las operaciones aritmeticas y lo números para generar procedimientos que puedan globalizarse para todos los casos analogos. esta rama se caracteriza por hacer implicitas las incognitas dentro de la misma operación; ecuación algebraica.
Etimologicamente, proviene del árabe (también nombrado por los árabes Amucabala )??? (yebr) ( al-dejaber ), con el significado de reducción, operación de cirugía por la cual se reducen los huesos luxados o fraccionados (algebrista era el médico reparador de huesos).


Historia del álgebra

El álgebra tuvo sus primeros avances en las civilizaciones de Babilonia y Egipto, entre el cuarto y tercer milenio antes de Cristo. Estas civilizaciones usaban primordialmente el álgebra para resolver ecuaciones de primer y segundo grado.
El álgebra continuó su constante progreso en la antigua Grecia. Los griegos usaban el álgebra para expresar ecuaciones y teoremas, un ejemplo es el teorema de pitagoras. Los matemáticos más destacados en este tiempo fueron Arquímedes, Herón y Diofante. Arquímedes se basó en las matemáticas en su tratados de física y geometría del espacio. Herón fue otro que se basó en ellas para hacer algunos de sus inventos, como la primera máquina de vapor. Diofante fue el griego que más contribuyó a esta área del conocimiento, como principales trabajos tenemos al análisis diofántico y la obra de Las Aritméticas, que recopila todo el conocimiento del álgebra hasta ese entonces.
Como consecuencia, el álgebra cambió de rumbo y amplió su dominio a todas las teorías que se habían inventado alrededor del tema inicial, incorporando las teorías de los grupos matemáticos y sus extensiones,y parte de lageometría, la rama relacionada con los polinomios de segundo grado de dos variables, es decir las cónicas elipse, parábola, hiperbola,círculo, ahora incluidas en el álgebra bilineal.
El álgebra se fundió con éxito con otras ramas de las matemticas como la lógica ( álgebra de Boole), el análisis y la topología.


Lenguaje Algebraico

El lenguaje algebraico

En lenguaje álgebraico nace en la civilización musulmán en el período de Al–khwarizmi, al cual se le considera el padre del álgebra. el lenguaje álgebraico consta principalmente de las letras de alfabeto y algunos vocablos griegos. La principal función de lenguaje álgebraico es estructurar un idioma que ayude a generalizar las diferentes operaciones que se desarrollan dentro de la aritmética, por ejemplo: si queremos sumar dos números cualesquiera basta con decir a + b; donde la letra a indique que es un número cualquiera de la numeración que conocemos, b de la misma manera que a significa un número cualquiera de la numeración.
También el lenguaje álgebraico ayuda mantener relaciones generales para razonamiento de problemas a los que se puede enfrentar cualquier ser humano en la vida cotidiana.

Lenguaje Álgebraico.

Para poder manejar el lenguaje álgebraico es necesario comprender lo siguiente:
  • Se usan todas las letras del alfabeto.
  • Las primeras letras del alfabeto se determinan por regla general como constantes, es decir, cualquier número o constante como el vocablo pi.
  • Por lo regular las letras X., Y y Z se utilizan como las incógnitas o variables de la función o expresión álgebraica.

Operaciones con Lenguaje Álgebraico

Aqui se presentan los siguientes ejemplos, son algunas de las situaciones más comunes que involucran los problemas de matemáticas con lenguaje álgebraico; cualquier razonamiento extra o formulación de operaciones con este lenguaje se basa estrictamente en estas definiciones:
  • un número cualquiera
se puede denominar con cualquier letra del alfabeto, por ejemplo:
a = un número cualquiera
b = un número cualquiera
c = un número cualquiera
... y así sucesivamente con todos los datos del alfabeto.
  • la suma de dos números cualesquiera
a+b = la suma de dos números cualesquiera
x+y = la suma de dos números cualesquiera
  • la resta de dos números cualesquiera
a-b = la resta de dos números cualesquiera
m-n = la resta de dos números cualesquiera
  • la suma de dos números cualesquiera menos otro número cualquiera
a-b+c =la suma de dos números cualesquiera menos otro número cualquiera
  • el producto de dos números cualesquiera
ab = el producto de dos números cualesquiera
  • el cociente de dos números cualesquiera (la división de dos números cualesquiera)
a/b= el cociente de dos números cualesquiera
  • la semisuma de dos números cualesquiera
(a+b)/2= la semisuma de dos números cualesquiera
  • el semiproducto de dos números cualesquiera
(ab)/2= el semiproducto de dos números cualesquiera



No hay comentarios:

Publicar un comentario